Spatio-textual similarity joins

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatio-textual similarity joins

Given a collection of objects that carry both spatial and textual information, a spatio-textual similarity join retrieves the pairs of objects that are spatially close and textually similar. As an example, consider a social network with spatially and textually tagged persons (i.e., their locations and profiles). A useful task (for friendship recommendation) would be to find pairs of persons tha...

متن کامل

SEAL: Spatio-Textual Similarity Search

Location-based services (LBS) have become more and more ubiquitous recently. Existing methods focus on finding relevant points-of-interest (POIs) based on users’ locations and query keywords. Nowadays, modern LBS applications generate a new kind of spatio-textual data, regions-of-interest (ROIs), containing region-based spatial information and textual description, e.g., mobile user profiles wit...

متن کامل

Hybrid-LSH for Spatio-Textual Similarity Queries

Locality Sensitive Hashing (LSH) is a popular method for high dimensional indexing and search over large datasets. However, little efforts have put forward to utilizing LSH in mobile applications for processing spatio-textual similarity queries, such as find nearby shopping centers that have a top ranked hair salon. In this paper, we present hybrid-LSH, a new LSH method for indexing data object...

متن کامل

Similarity Search on Spatio-Textual Point Sets

User-generated content on the Web increasingly has a geospatial dimension, opening new opportunities and challenges in location-based services and location-based social networks for mining and analyzing user behaviors and patterns. The applications of such analysis range from recommendation systems to geo-marketing. Motivated by these needs, querying and analyzing spatio-textual data has receiv...

متن کامل

High-dimensional Similarity Joins

A. Toga. QBISM: a prototype 3-d medical image database system. B. Seeger. The R-tree: an efficient and robust access method for points and rectangles. [7] C. Faloutsos and K.-I. Lin. Fastmap: A fast algorithm for indexing, data-mining and visualization of traditional and multimedia datasets. [8] A. Guttman. R-trees: a dynamic index structure for spatial searching. [12] D. Lomet and B. Salzberg....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the VLDB Endowment

سال: 2012

ISSN: 2150-8097

DOI: 10.14778/2428536.2428537